Restoration Site Analysis

(Before you go in the field)

Adam Cummings

USFS-PSW
adam.cummings@usda.gov

20-minute talk...

We going to be drawing lots of owls

Step 1: Does the site have LiDAR?

opentopography.org

https://coast.noaa.gov/dataviewer/#/

https://apps.nationalmap.gov/downloader/

And one of my favorite LiDAR tools:

- Google "3DEP wms server"
- Click the "3DEP Elevation (ImageServer)"
- Click "ArcGIS Earth" to download a kmz of the 3DEP to view in Google Earth.

 Not all the hillshade is 1m. The KML fills in the best resolution available, some of which is 3m or 10m.

Ok so you've got LiDAR. Now what? Very simple steps

Dynamic Range Adjustment

Hillshade with 5x vertical exaggeration

Slope Raster

(PnP zone of Yellow Creek with color range 1318 – 1322 m)

Possible next steps

- Generate basic flow routing
 - ArcMap
 - Saga-GIS
 - QGIS
 - TauDEM (My preferred)
 - Etc.
- Generate detrended elevation models and scream cross sections
 - Saga-GIS
 - {ProcessSpace} R package
 - Etc.
- Get to know your system!
 - Potential Constraints
 - And opportunities!

How to find the switches?

- 1. Define your Process
 Space (i.e. the area that you expect to be able to promote process).
- 2. Identify locations where your Process Space overlaps with areas of high potential to spread/escape existing confinements.

TauDEM + {ProcessSpace} + QGIS

Low-Threshold Flow Accumulation

 Flow accumulations can show potential reconnection or switch points

To make a LTFA:

- Use your favorite software to make a flow accumulation raster.
- Then set the symbology to mask values below a low threshold (50? 150? 10000?)

Flow Accumulation + Google Earth

No control over visualization but very straight-forward way to visualize how water might be moving on the landscape.

The SAGA-GIS version:

SAGA-GIS is another free software that can calculate the necessary rasters

Longitudinal profiles to explore

5 m from thalweg 3 m from thalweg 1 m from thalweg

5 m from thalweg 3 m from thalweg 1 m from thalweg

Longitudinal Connectivity

Roads!

This road above Yellow Creek appears to:

- 1. Concentrate flows into the project area
- 2. Potentially disrupt ground water flows
- 3. Disrupt hillslope sediment pulses
- 4. Be an untouchable infrastructure constraint.

And where roads finally allow water to pass....

- **Upstream**: A wet spongy groundwater fen system.
- **Downstream**: A single threaded incised channel.
- Cause: The road:
 - Daylights all the groundwater
 - Triples the watershed area (due to road capture)
 - Concentrates flows into a single flowpath

The final, most important step!

 Save what you found to GeoPDFs or some other format that you can use in the field.

And get in the field!

